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REFLECTIVE POWER OF TWO-PHASE MEDIA OF
CYLINDRICAL GEOMETRY

K. S. Adzerikho and N, V. Podluzhnyak UDC 535.36

The brightness of the radiation reflected from a cylinder filled with particles of known optical
properties is considered. The dependence of the reflective power on the optical properties of
the medium and the experimental conditions is investigated in the single-scattering approxima-
tion. The limits of applicability of the method are estimated.

In determining the reflective power of two-phase media of cylindrical geometry, the approximation most
commonly used is that of Eddington (see [1, 2], for example). As shown in [3, 4], it may correctly be used to
calculate the emissive characteristics of two-phase media of nonplanar geometry. However, when external
radiation is incident on a finite two-phase medium, the use of the Eddington approximation requires particular
caution, especially for media of optical thickness 7 € 1-3. In the present work, the single-scattering approxi-
mation is used to calculate the reflective power of such media and its dependence on the optical properties of
the medium and the experimental conditions is analyzed. '

The solution of the radiation-transfer equation in a two-phase medium may be written in the form (see
[5]1, for example)

I, ) =1(0, 1) exp[—fa(s')ds'] + jsJ(s') exp[— j x(s") ds"| ds'. @
0 0 s’ .

Here I(s, 1) is the radiation intensity at the point s in the direction 1 =1(8, ¢); 1(0, 1) is the infensity of
the external radiation; J(s) is the emissive power of an elementary volume of the medium; & =% + o is the
attenuation coefficient, equal to the sum of the absorption and scattering coefficients,

Since J(s) depends on I(s, 1) in the scattering medium, Eq. (1) may only be solved by numerical methods.
Limiting consideration to the case of single (nonmultiple) scattering, a solution of the problem may be obtained
by replacing J(s) in Eq. (1) by the distribution function for the sources created by the external radiation. In the
case of nonplanar media, the integral term in Eq. (1) requires special consideration. Its physical meaning in
the context of single scattering is fairly simple. It is the sum of the contributions of the radiation from each
point of the medium in a given direction, taking into account attenuation.

Consider a medium of cylindrical geometry containing particles of known optical properties. The chosen
coordinate system is shown in Fig. la: the x axis, from which 7 is measured is chosen in the plane containing
the direction of the external radiation and the cylinder axis. The angles 1 and ¢ are positive when measured
in the counterclockwise direction and negative in the opposite case. The angle 0, characterizing the direction
of observation of the scattered radiation, is measured from the z axis. It is simple to show that, for normal
incidence of the external radiation, the distribution of radiation sources in the cylindrical medium is given by
the relation

A
S=8(r, 0 )= Ti J = TJP(Y)IOGXP['_T("’ gut )

where I, is the external-radiation intensity in the direction 1; =14(6y, @g); p(Y) is the scattering index for an ele-
mentary volume; ¥ is the angle between the incident and observed radiation; A = o/(% + o) is the probability of
survival of a quantum; and: ‘
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Fig. 1. Choice of coordinate system (a) and diagram of ob-
gservation of scattered radiation (b).

T D=a(Y RR—1 sinZy + rcosm), 3
while R is the cylinder radius.

Note that incidence of the external radiation at some angle 6, to the cylinder surface may be taken into
account if r is replaced by r/sin6,, and the reflective power depends not on & and 6, but on ¥.

In the case 6 = 0 or 8 = = the solution may be obtained directly from the radiation-transfer equation
written in a cylindrical coordinate system

A 1 _—_—
I(v, m, 8, Pllo=o, n = P (7> Iyexp(—V ¢} — v2sin®n — cosy), {4)

where or = 7 and R = T are the variable and total optical radii of the cylindrical medium.

Consider the case when the radiation scattered by a cylindrical medium is observed in a plane perpendi-
cular to the cylinder axis (Fig. 1b). It follows from Fig. 1b that for an arbitrary direction of observation

T
Tl,=71+arcc°5[—sin2(p——coscp1/1-—- Zsing : , (5
To / (7
cos 1, = — cos (N + 2¢), sinn, = —sin (n -+ 2¢). (6)

The intensity of the scattered radiation at some point m =M(T'cos ', 7'sin %) is

In = poexp{—V 15—y —x'},
where p, = (M4np(Y)], is a parameter characterizing the bulk scattering of the medium. Taking into account the
contributions of the radiation from each point, attenuated over the path to the point N, the radiation at the point
N is given in the single-scattering approximation by the expression
T CO‘S n
I(t, v, 6, ¢)|e=;[_ = p, Q exp{—V 17 _ 4> —» — IMN}}dx’". (7

To cos M,

Writing the equation of the straight line NyN in the form y = bix + by, where

T sin — 1, sinw, b — T sin (1, — ) , (8)

b —==
1 b
T COS 1] — Ty COS 1)y T COS 1) —— T, COS 1),

[AV]
s
o]
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Fig. 2. Dependence of i = al/2p,T, on the optical
thickness Ty((a) and its angular distribution (b):
a)n=0(1), ¥22), 7 (3); b) 74 =0,125 (1), 0.5
2), 1.0 (3); 6 =n/2 for the constant curve, /3
for the dash—dot curve, and 7/6 for the dashed

curve,
Eq. (7) takes the form
Teosm "
11,0, @) _x =00 | ep{—V §— (b + bfp—x — byrcosn—xlydx, b=V 145} . 9
FY T, oSN, .

In considering the case 6 =m /2, it is necessary to take into account the change in the optical length of
scattering; i.e., in Eq.(7)| MN| must be replaced by |MN|/sin6. Then the final expression for the intensity of the
radiation propagating in a cylindrical medium, faking into account single-scatfering processes, is*

I(t, m, 6, @) =I6(l, —Dexp{— V' 15 —1?sin®n —tcosn} +

T cos M (10)
Ap(v) ) T L e o S
4nps(in—9 I, j exp{— V'cg — (b’ + b —x' — b | Tcosm—x'|}dx/,

Ty €OS 1y

where by =by/sin 6,

The first term in this expression determines the attenuation by the éylindrical medium of the external
radiation in the direction 1 =1,

When 7 + ¢~ 1/2, 31/2, i.e., for observation in directions close to the y axis, y must be used as the vari-
able of integration. Then Eq. (10) is replaced by the following expression:

I(t, m, 0, g=1H(,—1 exp{———Vrg——rzsinzn——rcosn} +

Tsinm (103)
L _ﬂ’_@_ I, j exp{——l/-rg-—y'2 — (e + €y — clTsing—y' [} dy’,
47sin @ J
T, Sin M,
where
T COS 1} — T, COS 1} Trsin(m—my) |
- .n ks 1;02: «.) ( ‘1’ a1
TSl — 1, 5in ", Tsinm — 1, sinmn,
Vit
Cg=—————+— -
sin@

*This relation may be generalized without difficulty to the case of inhomogeneous media.
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Fig. 3. Azimuthal distribution of intensity

of singly scattered radiation for 4 = 0 (6;= 6=
m/2): 1) 7, =0.125; 2) 0.25; 3) 0.5; 4) 1.0; 5)
2.0,

Since scattered radiation is usually observed at distances much greater than the radius of the cylindri-
cal medium, the determination of the total scattered-radiation intensity requires summation over ¢ in Egs. (10}
and (10a)
2 nx 12
I (g M 9):=§lﬁ};1(ro,n-_%%,9,¢ﬁ’). (12)
In the present calculations N = 9 was used. The dependence of the function i =i(7gy, 1, 6) = (&/20,T)L(T,,
7, ) on the optical radius 7 is shown in Fig, 2a. When the radiation is observed in the plane of incidence of
the external radiation (n = 0°) at various angles 6, the intensity of the scatiered radiation reaches a maximum
close to 74 ~ 0.6-08. For a plane layer 7; ~ 0.5 (the curve marked by the unfilled circles) and in addition the
change in intensity is sharper. In [6] it was shown that for A = 1 the intensity of doubly scattered radiation is
half that of singly scattered radiation for "reflection” and twice that of singly scattered radiation for "trans-
mission," For transmission, its maximum is in the region 75 ~ 0.75-0.80, Therefore, in calculating the re-
flective power of a two-phase medium restriction to the single-scattering approximation leads to an error of
25-30% for n =180°. With decrease in A = ¢/(% + 0), the error decreases in proportion to A/(2 + A). In the case
of transmission for A ~ 1, it is necessary to restrict consideration to values 7y ~1. For 7;> 1 and 7 = (° the
plane-layer approximation may be used to calculate the reflective power of a two-phase medium [5]. For ob-
servation from the side (7 = 7/2) there is a maximum, but for 7; = 25-3.0 the intensity is almost unchanged.

The angular distribution of i(ty, 17, 8) when 7, < 1 is almost spherical (Fig. 2b) and therefore the distribu-
tion of the light field in the single-scattering approximation will mainly be determined by the value of p,, i.e.,
the scattering index for an elementary volume of the medium. For 7, ~ 1, the degree of anisotropy of the
gcattered-radiation distribution

_im=0
ifn=mn
reaches ~0.6, i.e., the fraction of back-scattered radiation becomes larger than in the direction of propaga-
tion of the external radiation.

In considering the dependence of (1/pgI(r, 1, 8, ¢) on ¢, a fall in the scattered radiation with increase in
¢ is seen in the case of observation from the direction of the incident radiation. When 7 = 0° the geometry of
the scattering medium is significant: at the center (¢ = 0°) there is a minimum even for 7, = 0.5 because of the
large attenuation (Fig. 3). The data shown in Fig. 3 also indicate that the results differ considerably from bulk
scattering characterized by the parameter p, = A4 mp(NI,.
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NUMERICAL SOLUTION OF A NONSTEADY DIFFERENTIAL
EQUATION OF HEAT CONDUCTION

V. M. Kapinos and Yu. L. Khrestovoi UDC 536.24.02

The use of a "floating" weight is suggested in the numerical solution of a parabolic differential
equation of heat conduction with variable coefficients in integral-mean temperatures, used in
the calculation of thermal expansions of turbine components. Recommendations are given for
the determination of the optimum weights.

Heat-conduction problems which are reducible to one-dimensional problems, particularly in the calcula-
tion of the distribution of the integral-mean {emperatures of turbine components for the determination of their
thermal expansions {1, 2], lead to the following system of differential equations:

1 09

—;1—5;—=L0—;—G(z, ), =98 1), 0<2<<H, 0L T, 1)
B we—w@ = @@ @)
0z 220 0z zF

Blemo = G0 (2): (3)

where L¢ = 828/822 + A(z, 7)080z — B(z, 7)%, A, B, G, v, and p are assigned functions (B and v > 0); a is the
coefficient of thermal diffusivity.

The system (1)~(3) will be solved numerically on the grid

Opag = @y, X Oy, ={(ih, jAT), i=0,1,2, ..., 1 @
i=0, 1,2, .. .,i.)

with steps h = H/h and AT = T/jpy,.
Designating the value of the unknown grid function at the node (z; j) as 6; j and introducing the required

number 7 of real parameters, also grid functions in the general case, we obtain a parametric family of dif-
ference schemes approximating the system (1)-(3).

The approximation of Eq.(1) on a six-point pattern is written as ‘
Lo, =A%, + Bl 0<i<n 0<j<jm | 5)
a

where 01 = (85 +1 — 0j)AT, A* =A +A7 - B, A0j = 81+ — 26; +8;_4)/h?, 16; = (6341 — 8i-1)/2h are linear opera-
tors while 6y = nej + + (1 — 0)b;.

The coefficients of Eq.(1) are determined for each time layer with its weight

X = nxX;0+ (1 —n0) X X=4, B, G. (6)
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